Duntemann155248_ftoc.indd 13

Introduction

Chapter 1

Chapter 2

Contents

XXix

It’s All in the Plan 1
Another Pleasant Valley Saturday 1
Steps and Tests 3
More Than Two Ways? 3
Computers Think Like Us 4
Had This Been the Real Thing . . . 5
Assembly Language Programming As a Square Dance 5
Assembly Language Programming As a Board Game 6
Code and Data 8
Addresses 8
Metaphor Check! 9
Alien Bases 11
The Return of the New Math Monster 11
Counting in Martian 12
Dissecting a Martian Number 14
The Essence of a Number Base 16
Octal: How the Grinch Stole Eight and Nine 16
Who Stole Eight and Nine? 17
Hexadecimal: Solving the Digit Shortage 20
From Hex to Decimal and from Decimal to Hex 24
From Hex to Decimal 24
From Decimal to Hex 25
Practice. Practice! PRACTICE! 27
Arithmetic in Hex 28

xiii

8/28/2023 3:30:00 PM

Xiv Contents

Chapter 3

Chapter 4

Duntemann155248_ftoc.indd 14

Columns and Carries
Subtraction and Borrows
Borrows Across Multiple Columns
What'’s the Point?
Binary
Values in Binary
Why Binary?
Hexadecimal as Shorthand for Binary
Prepare to Compute

Lifting the Hood
RAXie, We Hardly Knew Ye
Gus to the Rescue
Switches, Transistors, and Memory
One If by Land...
Transistor Switches
The Incredible Shrinking Bit
Random Access
Memory Access Time
Bytes, Words, Double Words, and Quad Words
Pretty Chips All in a Row
The Shop Supervisor and the Assembly Line
Talking to Memory
Riding the Data Bus
The Shop Supervisor’s Pockets
The Assembly Line
The Box That Follows a Plan
Fetch and Execute
The Supervisor’s Innards
Changing Course

What vs. How: Architecture and Microarchitecture

Evolving Architectures

The Secret Machinery in the Basement
Enter the Plant Manager

Operating Systems: The Corner Office

BIOS: Software, Just Not as Soft

Multitasking Magic

Promotion to Kernel

The Core Explosion

The Plan

Location, Location, Location
The Joy of Memory Models
16 Bits’ll Buy You 64 KB

30
31
33
33
34
36
38
38
40

41
41
42
43
43
44
46
47
49
50
51
54
55
56
57
58
58
60
61
62
63
64
65
67
67
68
68
70
70
72

73
73
75

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 15

Contents XV
The Nature of a Megabyte 78
Backward Compatibility and Virtual 86 Mode 79
16-Bit Blinders 79
The Nature of Segments 80
A Horizon, Not a Place 84
Making 20-Bit Addresses Out of 16-Bit Registers 84
Segment Registers 87
Segment Registers and x64 88
General-Purpose Registers 88
Register Halves 91
The Instruction Pointer 92
The Flags Register 94
Math Coprocessors and Their Registers 94
The Four Major Assembly Programming Models 95
Real-Mode Flat Model 95
Real-Mode Segmented Model 97
32-Bit Protected Mode Flat Model 99
64-Bit Long Mode 101
Chapter5 The Right to Assemble 103
The Nine and Sixty Ways to Code 103
Files and What's Inside Them 104
Binary vs. Text Files 105
Looking at Binary File Internals with the GHex Hex Editor 106
Interpreting Raw Data 110
“Endianness” 111
Text In, Code Out 115
Assembly Language 116
Comments 118
Beware “Write-Only” Source Code! 119
Object Code, Linkers, and Libraries 120
Relocatability 123
The Assembly Language Development Process 123
The Discipline of Working Directories 125
Editing the Source Code File 126
Assembling the Source Code File 126
Assembler Errors 127
Back to the Editor 128
Assembler Warnings 129
Linking the Object Code File 130
Linker Errors 131
Testing the EXE File 131
Errors vs. Bugs 132

8/28/2023 3:30:00 PM

Xvi Contents

Chapter 6

Chapter 7

Duntemann155248_ftoc.indd 16

Are We There Yet?
Debuggers and Debugging
Taking a Trip Down Assembly Lane
Installing the Software
Step 1: Edit the Program in an Editor
Step 2: Assemble the Program with NASM
Step 3: Link the Program with 1d
Step 4: Test the Executable File
Step 5: Watch It Run in the Debugger

A Place to Stand, with Access to Tools
Integrated Development Environments
Introducing SASM

Configuring SASM

SASM’s Fonts

Using a Compiler to Link

A Quick Tour of SASM

SASM’s Editor

What SASM Demands of Your Code
Linux and Terminals

The Linux Console

Character Encoding in Konsole

The Three Standard Unix Files

I/0 Redirection

Simple Text Filters

Using Standard Input and Standard Output from Inside SASM

Terminal Control with Escape Sequences

So Why Not GUI Apps?
Using Linux Make

Dependencies

When a File Is Up-to-Date

Chains of Dependencies

Invoking Make

Creating a Custom Key Binding for Make

Using Touch to Force a Build
Debugging with SASM

Pick up Your Tools. . .

Following Your Instructions
Build Yourself a Sandbox

A Minimal NASM Program for SASM
Instructions and Their Operands
Source and Destination Operands

133
133
134
134
137
138
140
141
141

143
143
146
146
147
148
149
152
152
153
153
154
156
158
159
161
161
163
164
165
167
167
169
170
172
172
174

175
176
176
178
178

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 17

Contents xvii
Immediate Data 179
Register Data 181
Memory Data and Effective Addresses 184
Confusing Data and Its Address 185
The Size of Memory Data 185
The Bad Old Days 186
Rally Round the Flags, Boys! 186
Flag Etiquette 190
Watching Flags from SASM 190
Adding and Subtracting One with INC and DEC 191
How Flags Change Program Execution 192
How to Inspect Variables in SASM 194
Signed and Unsigned Values 195
Two’s Complement and NEG 196
Sign Extension and MOVSX 198
Implicit Operands and MUL 200
MUL and the Carry Flag 202
Unsigned Division with DIV 203
MUL and DIV Are Slowpokes 204
Reading and Using an Assembly Language Reference 205
Memory Joggers for Complex Memories 205
An Assembly Language Reference for Beginners 206
Flags 207
NEG Negate (Two’s Complement; i.e., Multiply by —1) 208
Flags Affected 208
Legal Forms 208
Examples 208
Notes 208
Legal Forms 209
Operand Symbols 209
Examples 210
Notes 210
What’s Not Here. . . 210
Our Object All Sublime 213
The Bones of an Assembly Language Program 213
The Initial Comment Block 215
The .data Section 216
The .bss Section 216
The .text Section 217
Labels 217
Variables for Initialized Data 218
String Variables 219

8/28/2023 3:30:00 PM

xviii Contents

Chapter 9

Duntemann155248_ftoc.indd 18

Deriving String Length with EQU and $

Last In, First Out via the Stack

Five Hundred Plates an Hour
Stacking Things Upside Down
Push-y Instructions

POP Goes the Opcode

PUSHA and POPA Are Gone
Pushing and Popping in Detail
Storage for the Short Term

Using Linux Kernel Services Through Syscall

X64 Kernel Services via the SYSCALL Instruction
ABIl vs. API?

The ABI's Register Parameter Scheme

Exiting a Program via SYSCALL

Which Registers Are Trashed by SysCall?

Designing a Nontrivial Program

Defining the Problem

Starting with Pseudocode

Successive Refinement

Those Inevitable “Whoops!” Moments
Scanning a Buffer

“Off by One” Errors

From Pseudocode to Assembly Code
The SASM Output Window Gotcha

Going Further

Bits, Flags, Branches, and Tables
Bits Is Bits (and Bytes Is Bits)

Bit Numbering

“It’s the Logical Thing to Do, Jim. . .”

The AND Instruction

Masking Out Bits

The OR Instruction

The XOR Instruction

The NOT Instruction

Segment Registers Don’t Respond to Logic!

Shifting Bits

Shift by What?

How Bit Shifting Works

Bumping Bits into the Carry Flag

The Rotate Instructions

Rotating Bits Through the Carry Flag
Setting a Known Value into the Carry Flag

221
223
223
225
226
227
228
229
231
231
232
232
233
234
235
235
235
236
237
241
242
244
246
248
248

251
251
252
252
253
254
255
256
257
258
258
258
259
260
260
261
262

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 19

Contents xix

Bit-Bashing in Action 262
Splitting a Byte into Two Nybbles 264
Shifting the High Nybble into the Low Nybble 265
Using a Lookup Table 266
Multiplying by Shifting and Adding 267
Flags, Tests, and Branches 270
Unconditional Jumps 271
Conditional Jumps 271
Jumping on the Absence of a Condition 272
Flags 273
Comparisons with CMP 274

A Jungle of Jump Instructions 275
“Greater Than” Versus “Above” 275
Looking for 1-Bits with TEST 277
Looking for 0-Bits with BT 279
X64 Long Mode Memory Addressing in Detail 279
Effective Address Calculations 281
Displacements 282
The x64 Displacement Size Problem 283
Base Addressing 283
Base + Displacement Addressing 283
Base + Index Addressing 284
Index X Scale + Displacement Addressing 285
Other Addressing Schemes 287
LEA: The Top-Secret Math Machine 289
Character Table Translation 290
Translation Tables 291
Translating with MOV or with XLAT 293
Tables Instead of Calculations 298
Chapter 10 Dividing and Conquering 299
Boxes within Boxes 300
Procedures as Boxes for Code 301
Calling and Returning 309
Calls Within Calls 311
The Dangers of Accidental Recursion 313

A Flag Etiquette Bug to Beware Of 314
Procedures and the Data They Need 315
Saving the Caller’s Registers 316
Preserving Registers Across Linux System Calls 317
PUSHAD and POPAD Are Gone 319
Local Data 321
Placing Constant Data in Procedure Definitions 322

8/28/2023 3:30:00 PM

XX Contents

Chapter 11

Duntemann155248_ftoc.indd 20

More Table Tricks

Local Labels and the Lengths of Jumps
“Forcing” Local Label Access
Short, Near, and Far Jumps

Building External Procedure Libraries
When Tools Reach Their Limits
Using Include Files in SASM
Where SASM’s Include Files Must Be Stored
The Best Way to Create an Include File Library
Separate Assembly and Modules
Global and External Declarations
The Mechanics of Globals and Externals
Linking Libraries into Your Programs
The Dangers of Too Many Procedures and Too

Many Libraries

The Art of Crafting Procedures
Maintainability and Reuse
Deciding What Should Be a Procedure
Use Comment Headers!

Simple Cursor Control in the Linux Console
Console Control Cautions

Creating and Using Macros
The Mechanics of Macro Definition
Defining Macros with Parameters
The Mechanics of Invoking Macros
Local labels Within Macros
Macro Libraries as Include Files
Macros vs. Procedures: Pros and Cons

Strings and Things
The Notion of an Assembly Language String
Turning Your “String Sense” Inside-Out
Source Strings and Destination Strings
A Text Display Virtual Screen
REP STOSB, the Software Machine Gun
Machine-Gunning the Virtual Display
Executing the STOSB Instruction
STOSB and the Direction Flag DF
Defining Lines in the Display Buffer
Sending the Buffer to the Linux Console
The Semiautomatic Weapon: STOSB Without REP
Who Decrements RCX?
The LOOP Instructions
Displaying a Ruler on the Screen
MUL Is Not IMUL

323
325
328
329
330
330
331
337
338
339
339
342
351

352
352
353
354
355
356
363
364
366
371
372
373
374
375

377
378
378
379
379
387
388
389
390
391
391
392
392
393
394
395

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 21

Contents xxi
Ruler’s Lessons 396
The Four Sizes of STOS 396
Goodbye, BCD Math 397
MOVSB: Fast Block Copies 397
DF and Overlapping Block Moves 398
Single-Stepping REP String Instructions 401
Storing Data to Discontinuous Strings 402
Displaying an ASCII Table 402
Nested Instruction Loops 404
Jumping When RCX Goes to 0 405
Closing the Inner Loop 406
Closing the Outer Loop 407
Showchar Recap 408
Command-Line Arguments, String Searches, and
the Linux Stack 408
Displaying Command-Line Arguments from SASM 408
String Searches with SCASB 411
REPNE vs. REPE 413
You Can’t Pass Command-Line Arguments to
Programs Within SASM 413
The Stack, Its Structure, and How to Use It 414
Accessing the Stack Directly 417
Program Prologs and Epilogs 419
Addressing Data on the Stack 420
Don’t Pop! 422
Chapter 12 Heading Out to C 423
What’s GNU? 424
The Swiss Army Compiler 425
Building Code the GNU Way 425
SASM Uses GCC 427
How to Use gcc in Assembly Work 427
Why Not gas? 428
Linking to the Standard C Library 429
C Calling Conventions 431
Callers, Callees, and Clobbers 431
Setting Up a Stack Frame 433
Destroying a Stack Frame in the Epilog 434
Stack Alignment 435
Characters Out Via puts() 437
Formatted Text Output with printf() 438
Passing Parameters to printf() 440
Printf() Needs a Preceding 0 in RAX 442
You Shall Have —No-Pie 442
Data In with fgets() and scanf() 442

8/28/2023 3:30:00 PM

xxii Contents

Using scanf() for Entry of Numeric Values
Be a Linux Time Lord
The C Library’s Time Machine
Fetching time_t Values from the System Clock
Converting a time_t Value to a Formatted String
Generating Separate Local Time Values
Making a Copy of glibc’s tm Struct with MOVSD
Understanding AT&T Instruction Mnemonics
AT&T Mnemonic Conventions
AT&T Memory Reference Syntax
Generating Random Numbers
Seeding the Generator with srand()
Generating Pseudorandom Numbers
Some Bits Are More Random Than Others
Calls to Addresses in Registers
Using puts() to Send a Naked Linefeed to the Console
How to Pass a libc Function More Than Six Parameters
How C Sees Command-Line Arguments
Simple File I/O
Converting Strings into Numbers with sscanf()
Creating and Opening Files
Reading Text from Files with fgets()
Writing Text to Files with fprintf()
Notes on Gathering Your Procedures into Libraries

Conclusion: Not the End, But Only the Beginning

Appendix A

Appendix B

Duntemann155248_ftoc.indd 22

The Return of the Insight Debugger

Insight’s Shortcomings

Opening a Program Under Insight

Setting Command-Line Arguments with Insight
Running and Stepping a Program

The Memory Window

Showing the Stack in Insight’s Memory View
Examining the Stack with Insight’s Memory View
Learn gdb!

Partial x64 Instruction Reference

What's Been Removed from x64

Flag Results

Size Specifiers

Instruction Index

ADC: Arithmetic Addition with Carry
Flags Affected

445
448
449
451
451
452
453
456
457
459
460
461
461
467
469
470
470
472
474
475
477
478
481
482

489

493
494
495
496
496
497
498
498
500

501
502
502
503
505
507
507

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 23

Contents xxiii
Legal Forms 507
Examples 507
Notes 507
ADD: Arithmetic Addition 509
Flags Affected 509
Legal Forms 509
Examples 509
Notes 509
AND: Logical AND 511
Flags Affected 511
Legal Forms 511
Examples 511
Notes 511
BT: Bit Test 513
Flags Affected 513
Legal Forms 513
Examples 513
Notes 513
CALL: Call Procedure 515
Flags Affected 515
Legal Forms 515
Examples 515
Notes 515
CLC: Clear Carry Flag (CF) 517
Flags Affected 517
Legal Forms 517
Examples 517
Notes 517
CLD: Clear Direction Flag (DF) 518
Flags Affected 518
Legal Forms 518
Examples 518
Notes 518
CMP: Arithmetic Comparison 519
Flags Affected 519
Legal Forms 519
Examples 519
Notes 519
DEC: Decrement Operand 521
Flags Affected 521
Legal Forms 521
Examples 521
Notes 521

8/28/2023 3:30:00 PM

xxiv Contents

Duntemann155248_ftoc.indd 24

DIV: Unsigned Integer Division
Flags Affected
Legal Forms
Examples
Notes
INC: Increment Operand
Flags Affected
Legal Forms
Examples
Notes
J?2?2: Jump If Condition Is Met
Flags Affected
Examples
Notes
JECXZ: Jump if ECX=0
Flags Affected
Legal Forms
Examples
Notes
JRCXZ: Jump If RCX=0
Flags Affected
Legal Forms
Examples
Notes
JMP: Unconditional Jump
Flags Affected
Legal Forms
Examples
Notes
LEA: Load Effective Address
Flags Affected
Legal Forms
Examples
Notes

LOOP: Loop Until CX/ECX/RCX=0

Flags Affected
Legal Forms
Examples
Notes

LOOPNZ/LOOPNE: Loop Until CX/ECX/RCX=0 and ZF=0

Flags Affected
Legal Forms

522
522
522
522
522
524
524
524
524
524
525
525
525
525
527
527
527
527
527
528
528
528
528
528
529
529
529
529
529
531
531
531
531
531
532
532
532
532
532
534
534
534

8/28/2023 3:30:00 PM

Duntemann155248_ftoc.indd 25

Contents xxv
Examples 534
Notes 534
LOOPZ/LOOPE: Loop Until CX/ECX/RCX=0 and ZF=1 535
Flags Affected 535
Legal Forms 535
Examples 535
Notes 535
MOV: Copy Right Operand into Left Operand 536
Flags Affected 536
Legal Forms 536
Examples 536
Notes 536
MOVS: Move String 538
Flags Affected 538
Legal Forms 538
Examples 538
Notes 538
MOVSX: Copy with Sign Extension 540
Flags Affected 540
Legal Forms 540
Examples 540
Notes 540
MUL: Unsigned Integer Multiplication 542
Flags Affected 542
Legal Forms 542
Examples 542
Notes 542
NEG: Negate (Two’s Complement; i.e., Multiply by —1) 544
Flags Affected 544
Legal Forms 544
Examples 544
Notes 544
NOP: No Operation 546
Flags Affected 546
Legal Forms 546
Examples 546
Notes 546
NOT: Logical NOT (One’s Complement) 547
Flags Affected 547
Legal Forms 547
Examples 547
Notes 547

8/28/2023 3:30:01 PM

xxvi Contents

Duntemann155248_ftoc.indd 26

OR: Logical OR
Flags Affected
Legal Forms
Examples
Notes
POP: Copy Top of Stack into Operand
Flags Affected
Legal Forms
Examples
Notes
POPE/D/Q: Copy Top of Stack into Flags Register
Flags Affected
Legal Forms
Examples
Notes
PUSH: Push Operand onto Top of Stack
Flags Affected
Legal Forms
Examples
Notes
PUSHF/D/Q: Push Flags Onto the Stack
Flags Affected
Legal Forms
Examples
Notes
RET: Return from Procedure
Flags Affected
Legal Forms
Examples
Notes
ROL/ROR: Rotate Left/Rotate Right
Flags Affected
Legal Forms
Examples
Notes
SBB: Arithmetic Subtraction with Borrow
Flags Affected
Legal Forms
Examples
Notes
SHL/SHR: Shift Left/Shift Right
Flags Affected
Legal Forms
Examples

548
548
548
548
548
550
550
550
550
550
552
552
552
552
552
553
553
553
553
553
555
555
555
555
555
556
556
556
556
556
558
558
558
558
558
560
560
560
560
560
562
562
562
562

8/28/2023 3:30:01 PM

Duntemann155248_ftoc.indd 27

Contents xxvii

Notes 562
STC: Set Carry Flag (CF) 564
Flags Affected 564
Legal Forms 564
Examples 564
Notes 564
STD: Set Direction Flag (DF) 565
Flags Affected 565
Legal Forms 565
Examples 565
Notes 565
STOS/B/W/D/Q: Store String 566
Flags Affected 566
Legal Forms 566
Examples 566
Notes 566
SUB: Arithmetic Subtraction 568
Flags Affected 568
Legal Forms 568
Examples 568
Notes 569
SYSCALL: Fast System Call into Linux 570
Flags Affected 570
Legal Forms 570
Examples 570
Notes 570
XCHG: Exchange Operands 571
Flags Affected 571
Legal Forms 571
Examples 571
Notes 571
XLAT: Translate Byte Via Table 572
Flags Affected 572
Legal Forms 572
Examples 572
Notes 572
XOR: Exclusive OR 573
Flags Affected 573
Legal Forms 573
Examples 573
Notes 573
Appendix C Character Set Charts 575
Index 579

8/28/2023 3:30:01 PM

Duntemann155248_ftoc.indd 28 @ 8/28/2023 3:30:01 PM

